Upper triangular operators with SVEP: Spectral properties
نویسندگان
چکیده
منابع مشابه
Upper Triangular Operator Matrices , SVEP and Browder , Weyl Theorems
A Banach space operator T ∈ B(X ) is polaroid if points λ ∈ isoσσ(T ) are poles of the resolvent of T . Let σa(T ), σw(T ), σaw(T ), σSF+(T ) and σSF−(T ) denote, respectively, the approximate point, the Weyl, the Weyl essential approximate, the upper semi–Fredholm and lower semi–Fredholm spectrum of T . For A, B and C ∈ B(X ), let MC denote the operator matrix (
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملConsistent in invertibility operators and SVEP
If S(X ) ⊂ B(X ), where B(X ) denotes the algebra of operators on a Banach space X , then A ∈ B(X ) is S(X ) consistent if AB ∈ S(X ) ⇐⇒ BA ∈ S(X ) for every B ∈ B(X ). SVEP is a powerful tool in determining the S(X ) consistency of operators A for various choices of the subset S(X ).
متن کاملSpectral Properties of Operators
It is well known that the identity is an operator with the following property: if the operator, initially defined on an n-dimensional Banach space V , can be extended to any Banach space with norm 1, then V is isometric to (n) ∞ . We show that the set of all such operators consists precisely of those with spectrum lying in the unit circle. This result answers a question raised in [5] for comple...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2007
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil0701025d